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The ubiquity of amides throughout organic, biological, and Table 1. Amine Scope
materials chemistry mandates the development of more efficient

methods for their syntheslsConventional amide bond formation C\‘N‘N
utilizes acids and amines as coupling partners and relies on o A @; ®F .
stoichiometric activating agents for the acid functionalityA recent /581\ *50 mol % 0
survey of process scale reactions cites a “...pressing need for the Ph o e H HOAt (20 mol %) Ph/\)J\rlq'R‘
development of catalytic environmentally friendly acylation pro- 1 HNR4R; (1.05 equiv) Cl 5 Ry
cesses*>Wef and othershave recently illustrated that nucleophilic Entry? Yield (%) Entry Yield (%)
carbenékcatalyze an internal redox reaction wherebyeducible o
aldehydes providen-reduced ester derivatives under catalytic 1 pp N Me 89 i 6 /\HJ\ @
conditions? Surprisingly, among the many nucleophiles reported P ;
to participate in this process, there are only two amines®@ ave o ;
shown that aniline participates, and Sch®idtas shown that a 2 pn N/O 85 | o
vinylogous imide could be uséf.Clearly, the salient features of 2 a H ; /©\
this redox manifold, a waste free catalyzed acylation, provide a oM 7 Ph & N cl82
strong impetus to identify a general solution to the problem of NHC 3 pn N)<M: 73 2h
catalyzed amidation. Herein, we report one such solution relying YL :
on relay catalysis by a nucleophilic carbene and a common peptide o ? /©/
cocatalyst such as 1-hydroxy-7-azabenzotridzqldOAt). 4 Ph/\HLN/\Me gg |8 /\HLN

Outside of aniline, our efforts at using amines as nucleophiles 2 ¢l .
in the a-redox reaction were met with uniform failure. Since we o Ve o Me
had established that phenols are competent partners, we hypoth- 5 Ph/\HLN,Me 79 9 0 gsbe
esized that the use of a cocatalyst such as HOAt could provide a of & OMe M LN T

relay shuttlet?23 HOAt should participate in the redox chemistry
to generate activated ester which would undergo the in situ  acataiysta (20 mol %), HOAt (20 mol %), BN (1.2 equiv), THF (0.5
amidation, thereby regenerating the catalyst. The viability of a M), t-BuOH (1.0 equiv), 25°C, 6 h, unless otherwise noteétdHOBt (20
concerted catalytic system using N-heterocyclic carbenes and HOAtMol %) and E4N (2.1 equiv) were used.Diastereomeric ratio 2:1.

to generate amides was investigated utilizing 2,2-dichloro-3-

phenylpropanal as the redox substrate and benzyl amine as thel). Electron-rich and -poor aryl amin@é—h (entries 6-8, Table
nucleophile. The desired chemical transformation took place to 1) also undergo the transformation readily to give the desired
afford the benzyl amid@ain 93% vyield (eq 1). In the absence of anilides in 82-87% yield. Amino esters are also competent partners
HOAL, only minor amidation product is observ&dA cocatalyst (entry 9, Table 1).

screen revealed that 1-hydroxybenzotriazole (HOBt), 4-(dimethy- A variety of a-haloaldehydes are suitable partners indhedox
lamino)pyridine (DMAP), imidazole, and pentafluorophenol (PF- amidation. The reaction is tolerant of branching at thand 8
POH) are effective at promoting the reaction, affording the desired position: a,a-dichloroisovaleraldehyde provid@sin 72% yield,

amide products. ando-bromocyclohexanecarboxaldehyde provides 80% yield
(Figure 1).
F One of the strengths of the redox amidation reaction manifold
Cl:/ N> is that the appropriate choice afreducible aldehyde provides an
Ph H A S, £ Cocatalyst o} opportunity for a waste free amidation. Treatmentogf-epoxy
1 c’a (20 mol %) (20 mol%) pp, N Ph and aziridino aldehydes under the redox amidation conditions
"/\ DIPEA(1.2 eq), THF, 23 °C 2a¢ "o affords 5-hydroxy andf-amino amides (entries-13, Table 2) in
HN™ “Ph good yields and excellent diastereoselectivitieg-Unsaturated
Cocatalyst: None HOBt HOAt DMAP Imidazole PFPOH aldehydes provide the alkanamides in good yield (entries 4 and 5,
Yield (%) 30 92 93 90 85 88
Experiments that probe the scope of useful amine partners are ~p 0
summarized in Table 1. A variety of primary and secondary amines Me)\)L O)L HAPh
partake in the reaction (entries-5, Table 1) to afford the desired 5 Cl
amide in good to excellent yields. Of particular interest is the Yield (%) 72 83

generation of the Weinreb ami@ in 72% yield (entry 5, Table Figure 1. o-Haloaldehyde substrate scope.
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Table 2.  Atom-Economical Amidation

ROF
N
e
X N\//N@ F
R H o XH O
o Ri A BF, F F .
. 10 mol % R y N2
cocatalyst (10 mol%) R, N
HoN-R, DIPEA (10-30 mol%) 7
Entry Substrate Product Yield (%) dr
OH O
00
1 PhA*)LH PR ”/\Ph 867 >19:1
(+)-6a Me 7a Me
0° OH O Me
2 Ph/ﬂ)kH Ph” "N O  75a 151
(+)-6a Me 7o me 1 OBu
TS TSs\H o
N N
3 Ph/ﬂ)\H PR” Y N” PR 728 >19:1
(+/-)-6b e 7c Me
o
0 /\)J\
P
EtO,C N">Ph
4 Etozc/\)LH 2 H 80> -
L d g
/\)J\ P
5 PE:\)LH Ph7 N Ph a2b )
e

a CatalystA (10 mol %), imidazole (10 mol %), DIPEA (30 mol %),
t-BuOH (0.1 M), 40°C, 24 h.P CatalystA (10 mol %), HOAt (10 mol %),
DIPEA (10 mol %), THF (1.0 M), 45C.

BF4

o)
B
F’ 20 mol % ©
c’ ¢l > Ph/\|)J\N/\Ph (2)
HOALt (20 mol%), DABCO(1.1 eq) & H
PhMe (0.05 M), PhCH,NH,
23°C,24h 62% yield
80% ee
BF4
B 20mol% " O)L )\©
Me  HOAt (20 mol %), DABCO (1.4 eq)
i )\NHZ CH,Cl, (0.03M), 23 °C 40 % yield
(1.0 eq) <2% ee
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Scheme 1. Proposed Catalytic Cycle
N/ N
L O e
R N- N .
! R IV
CARBENE HOAt
CATALYSIS CATALYSIS
o R o]
1 \ “
HX R NO® | ) R R
RN N"N N
I d i oA "R

Table 2). Importantly, in each case, the only stoichiometric waste
generated is derived from solvent; even the base is used in catalytic
amounts.

The catalytic cycle is postulated to initiate upon formation of
carbend, which undergoes nucleophilic addition to the aldehyde
(Scheme 1). Generation of the acyl azolium intermedihtsets
the stage for an acyl transfer event with cocatallistto furnish
the activated carboxylat®/. Nucleophilic attack by the amine
affords the amide and regenerates the cocatalyst.

Experimental support for the proposed mechanism is provided
by the use of chiral carbenes in this process. The use of cailyst
leads to an asymmetrig-chloroamide synthesis in modest ee (eq
2), validating the role of the carbene in controlling the protonation
event. In contrast, the use Bfprovides no selectivity in the kinetic
resolution ofa-methylbenzyl amine (eq 3). In addition, the use of
stoichiometric HOAt in the absence of amine provides the HOAt
esterlV in 64% vyield. Addition of BnNH generates the amide
guantitatively.

In summary, we have developed a waste free amide bond forming
reaction usingo-reducible aldehydes and amines catalyzed by
carbenes in conjunction with common peptide additives as cocata-
lysts.
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